Hypoxia-inducible factor-1α regulates the expression of nucleotide excision repair proteins in keratinocytes
نویسندگان
چکیده
The regulation of DNA repair enzymes is crucial for cancer prevention, initiation, and therapy. We have studied the effect of ultraviolet B (UVB) radiation on the expression of the two nucleotide excision repair factors (XPC and XPD) in human keratinocytes. We show that hypoxia-inducible factor-1alpha (HIF-1alpha) is involved in the regulation of XPC and XPD. Early UVB-induced downregulation of HIF-1alpha increased XPC mRNA expression due to competition between HIF-1alpha and Sp1 for their overlapping binding sites. Late UVB-induced enhanced phosphorylation of HIF-1alpha protein upregulated XPC mRNA expression by direct binding to a separate hypoxia response element (HRE) in the XPC promoter region. HIF-1alpha also regulated XPD expression by binding to a region of seven overlapping HREs in its promoter. Quantitative chromatin immunoprecipitation assays further revealed putative HREs in the genes encoding other DNA repair proteins (XPB, XPG, CSA and CSB), suggesting that HIF-1alpha is a key regulator of the DNA repair machinery. Analysis of the repair kinetics of 6-4 photoproducts and cyclobutane pyrimidine dimers also revealed that HIF-1alpha downregulation led to an increased rate of immediate removal of both photolesions but attenuated their late removal following UVB irradiation, indicating the functional effects of HIF-1alpha in the repair of UVB-induced DNA damage.
منابع مشابه
Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کاملThe Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats
Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...
متن کاملEffect of High-Intensity Interval Training (HIIT) on Hypoxia-Inducible Factor-1 Alpha (HIF-1α) Gene Expression in Heart Tissue and Insulin Resistance Index in Type 2 Diabetic Rats
Background and Aim: One of the most common metabolic diseases is diabetes with hyperglycemic properties and endogenous insulin dysfunction. This study aimed to evaluate the effect of 10 weeks HIIT on HIF-1α gene expression in heart tissue of rats with type 2 diabetes. Methods: In this experimental study, 36 Wister rats with a mean weight of 200±58g were randomly assigned to control, diabetic,...
متن کاملEffect of 8 weeks of Aerobic Training on Genes Expression of Hypoxia Inducible Factor HIF-1α, Vascular Endothelial Growth Factor (VEGF) and Angiostatin in Hippocampus of Male Rats with Wistar Model
Introduction: Many studies have been done about the effects of exercise on angiogenic inhibitor and stimulator factors in muscles, but few studies have examined the role of these factors in the brain especially the hippocampus. Therefore, the purpose of the current study was to investigate the effect of 8 weeks of aerobic training on gene expression of HIF-1α, VEGF and angiostatin in hippocampu...
متن کاملAMP-Activated Protein Kinase α2 in Neutrophils Regulates Vascular Repair via Hypoxia-Inducible Factor-1α and a Network of Proteins Affecting Metabolism and Apoptosis
RATIONALE The AMP-activated protein kinase (AMPK) is stimulated by hypoxia, and although the AMPKα1 catalytic subunit has been implicated in angiogenesis, little is known about the role played by the AMPKα2 subunit in vascular repair. OBJECTIVE To determine the role of the AMPKα2 subunit in vascular repair. METHODS AND RESULTS Recovery of blood flow after femoral artery ligation was impaire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2010